Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Larval net-spinning caddisflies (Hydropsychidae) function as ecosystem engineers in streams where they construct protective retreats composed of organic and inorganic material affixed with silk filtration nets that alter streambed hydrology. We hypothesized that hydropsychid bio-structures (retreats, nets) are microhabitats for microbes with oxygen-sensitive metabolisms, and therefore increase the metabolic heterogeneity of streambed microbial assemblages. Metagenomic and 16 S rRNA gene amplicon analysis of samples from a montane stream (Cherry Creek, Montana, USA) revealed that microbiomes of caddisfly bio-structures are taxonomically and functionally distinct from those of the immediately adjacent rock biofilm (~2 cm distant) and enriched in microbial taxa with established roles in denitrification, nitrification, and methane production. Genes for denitrification, high oxygen affinity terminal oxidases, hydrogenases, oxidative dissimilatory sulfite reductases, and complete ammonia oxidation are significantly enriched in caddisfly bio-structures. The results suggest a novel ecosystem engineering effect of caddisflies through the creation of low-oxygen, denitrifier-enriched niches in the stream microbiome. Facilitation of metabolic diversity in streambeds may be a largely unrecognized mechanism by which caddisflies alter whole-stream biogeochemistry.more » « less
- 
            Mendoza-Lera, Clara (Ed.)Hyporheic exchange is now widely acknowledged as a key driver of ecosystem processes in many streams. Yet stream ecologists have been slow to adopt nuanced hydrologic frameworks developed and applied by engineers and hydrologists to describe the relationship between water storage, water age, and water balance in finite hydrosystems such as hyporheic zones. Here, in the context of hyporheic hydrology, we summarize a well-established mathematical framework useful for describing hyporheic hydrology, while also applying the framework heuristically to visualize the relationships between water age, rates of hyporheic exchange, and water volume within hyporheic zones. Building on this heuristic application, we discuss how improved accuracy in the conceptualization of hyporheic exchange can yield a deeper understanding of the role of the hyporheic zone in stream ecosystems. Although the equations presented here have been well-described for decades, our aim is to make the mathematical basis as accessible as possible and to encourage broader understanding among aquatic ecologists of the implications of tailed age distributions commonly observed in water discharged from and stored within hyporheic zones. Our quantitative description of “hyporheic hydraulic geometry,” associated visualizations, and discussion offer a nuanced and realistic understanding of hyporheic hydrology to aid in considering hyporheic exchange in the context of river and stream ecosystem science and management.more » « less
- 
            Hyporheic exchange is a key driver of ecosystem processes in streams, yet stream ecologists often fail to leverage detailed conceptual models developed by engineers and hydrologists describing the relationship between water storage, water balance, and water age (time elapsed since a conceptual parcel of water entered the hyporheic zone) in hyporheic zones. In a companion paper (G.C. Poole et al. Hyporheic Hydraulic Geometry: Conceptualizing relationships among hyporheic exchange, storage, and water age, published in PLoS ONE; doi:10.1371/journal.pone.0262080), we provide visualizations of these relationships in an effort to allow non-hydrologists to grasp four primary concepts along with associated research and management implications: 1) the rate of hyporheic exchange, size of the hyporheic zone, and hyporheic water age are inexorably linked; 2) such linkages can be leveraged to build understanding of hyporheic processes; 3) the age distribution of hyporheic water and hyporheic discharge is heavily skewed toward young water ages -- at any temporal scale of observation (minutes, hours, days, or months) older hyporheic water is rare relative to younger water; 4) the age distribution of water discharged from any hyporheic zone is not the same as the age distribution of water stored within that hyporheic zone. The data set presented here represents the numerical values represented by the figures published in the companion paper.more » « less
- 
            Markel, Scott (Ed.)The opportunity to participate in and contribute to emerging fields is increasingly prevalent in science. However, simply thinking about stepping outside of your academic silo can leave many students reeling from the uncertainty. Here, we describe 10 simple rules to successfully train yourself in an emerging field, based on our experience as students in the emerging field of ecological forecasting. Our advice begins with setting and revisiting specific goals to achieve your academic and career objectives and includes several useful rules for engaging with and contributing to an emerging field.more » « less
- 
            Summary Little is known about how the geological history of an environment shapes its physical and chemical properties and how these, in turn, influence the assembly of communities. Evening primrose (EP), a moderately acidic hot spring (pH 5.6, 77.4°C) in Yellowstone National Park (YNP), has undergone dramatic physicochemical change linked to seismic activity. Here, we show that this legacy of geologic change led to the development of an unusual sulphur‐rich, anoxic chemical environment that supports a unique archaeal‐dominated and anaerobic microbial community. Metagenomic sequencing and informatics analyses reveal that >96% of this community is supported by dissimilatory reduction or disproportionation of inorganic sulphur compounds, including a novel, deeply diverging sulphate‐reducing thaumarchaeote. When compared to other YNP metagenomes, the inferred functions of EP populations were like those from sulphur‐rich acidic springs, suggesting that sulphur may overprint the predominant influence of pH on the composition of hydrothermal communities. Together, these observations indicate that the dynamic geological history of EP underpins its unique geochemistry and biodiversity, emphasizing the need to consider the legacy of geologic change when describing processes that shape the assembly of communities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
